Voter model on Sierpinski fractals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 3 M ay 2 00 5 Voter model on Sierpinski fractals Krzysztof

We investigate the ordering of voter model on fractal lattices: Sierpinski Carpets and Sierpinski Gasket. We obtain a power law ordering, similar to the behavior of one-dimensional system, regardless of fractal ramification.

متن کامل

Phase Transitions on Sierpinski Fractals

The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on a two dimensional deterministic fractal lattice of Hausdorff dimension dH = ln 8/ ln 3 = 1.89278926.... We give evidence of the ex...

متن کامل

Interacting Linear Polymers on Three–dimensional Sierpinski Fractals

Using self–avoiding walk model on three–dimensional Sierpinski fractals (3d SF) we have studied critical properties of self–interacting linear polymers in porous environment, via exact real–space renormalization group (RG) method. We have found that RG equations for 3d SF with base b = 4 are much more complicated than for the previously studied b = 2 and b = 3 3d SFs. Numerical analysis of thes...

متن کامل

Crossover exponent for piecewise directed walk adsorption on Sierpinski fractals

We study the problem of critical adsorption of piecewise directed random walks on a boundary of fractal lattices that belong to the Sierpinski gasket family. By applying the exact real space renormalization group method, we calculate the crossover exponent φ, associated with the number of adsorbed steps, for the complete fractal family. We demonstrate that our results are very close to the resu...

متن کامل

Critical properties of Ising model on Sierpinski fractals . A finite size scaling analysis approach

The present paper focuses on the order-disorder transition of an Ising model on a self-similar lattice. We present a detailed numerical study, based on the Monte Carlo method in conjunction with the finite size scaling method, of the critical properties of the Ising model on some two dimensional deterministic fractal lattices with different Hausdorff dimensions. Those with finite ramification o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica A: Statistical Mechanics and its Applications

سال: 2006

ISSN: 0378-4371

DOI: 10.1016/j.physa.2005.08.003